Home

home

Reference List

Abdelhamed, M., Razavi, S., Elshamy, M., & Wheater, H. (2018). Assessing baseflow simulation using MESH in Upper Liard Sub-Basin. In Global Water Futures Inaugural Science Meeting. https://doi.org/10.13140/RG.2.2.30541.33764

Agriculture and Agrifood Canada (AAFC). (2019, May 27). National Ecological Framework. Retrieved from http://sis.agr.gc.ca/cansis/nsdb/ecostrat/index.html

Anis, M. R., Razavi, S., & Wheater, H. (2017). An integrated modelling framework for regulated river systems in Land Surface Hydrological Models, 19.

Changing Cold Regions Network. (2019a, August 10). Hydrological Models. Retrieved from http://ccrnetwork.ca/science/models/hydrological-models/index.php

Changing Cold Regions Network. (2019b, August 13). 14. Baker Creek, NWT. Retrieved from http://ccrnetwork.ca/science/WECC/sub-arctic-lowlands/baker-creek.php

Cook, A. (2019). Photographs in the Baker Creek Watershed. Northwest Territories, Canada.

Dingman, S. L. (2015). Physical hydrology. Progress in Physical Geography (3rd ed.). Long Grove, IL: Waveland Press Inc.

Elshamy, M. E., Princz, D., Sapriza-Azuri, G., Pietroniro, A., Wheater, H. S., & Razavi, S. (2019). On the Configuration and Initialization of a Large Scale Hydrological Land Surface Model to Represent Permafrost. Hydrology and Earth System Sciences Discussions, (May), 1–49. https://doi.org/10.5194/hess-2019-206

Environment and Climate Change Canada. (2014, October 29). Regional Deterministic Precipitation Analysis (RDPA-CaPA). Retrieved from http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/capa_information_leaflet_20141118_en.pdf

Environment and Climate Change Canada. (2019, May). Historical Data. Retrieved from Government of Canada: http://climate.weather.gc.ca/historical_data/search_historic_data_e.html

Environment and Climate Change Canada. (2019, August 13). Yellowknife A, Climate ID 2204100. Retrieved from Canadian Climate Normals 1981-2010 Station Data: http://climate.weather.gc.ca/climate_normals/index_e.html

Fish Crossing. (2019, June). Manning’s n Values. Retrieved from http://www.fsl.orst.edu/geowater/FX3/help/FX3_Help.html#8_Hydraulic_Reference/Flow_Profiles.htm

Fortin, V., Roy, G., Stadnyk, T., Koenig, K., Gasset, N., & Mahidjiba, A. (2018). Ten Years of Science Based on the Canadian Precipitation Analysis: A CaPA System Overview and Literature Review†. Atmosphere - Ocean, 56(3), 178–196. https://doi.org/10.1080/07055900.2018.1474728

Gábor, A., Villaverde, A. F., & Banga, J. R. (2017). Parameter identifiability analysis and visualization in large-scale kinetic models of biosystems. BMC Systems Biology, 11(1), 1–16. https://doi.org/10.1186/s12918-017-0428-y

Guan, X. J., Spence, C., & Westbrook, C. J. (2010). Shallow soil moisture - Ground thaw interactions and controls - Part 2: Influences of water and energy fluxes. Hydrology and Earth System Sciences, 14(7), 1387–1400. https://doi.org/10.5194/hess-14-1387-2010

Guan, X. J., Westbrook, C. J., & Spence, C. (2010). Shallow soil moisture - Ground thaw interactions and controls - Part 1: Spatiotemporal patterns and correlations over a subarctic landscape. Hydrology and Earth System Sciences, 14(7), 1375–1386. https://doi.org/10.5194/hess-14-1375-2010

Haghnegahdar, A. (2015). An Improved Framework for Watershed Discretization and Model Calibration: Application to the Great Lakes Basin. University of Waterloo.

Haghnegahdar, A., Tolson, B. A., Craig, J. R., & Paya, K. T. (2015). Assessing the performance of a semi-distributed hydrological model under various watershed discretization schemes. Hydrological Processes, 29(18), 4018–4031. https://doi.org/10.1002/hyp.10550

Hossain, K, Elshorbagy, A., Bharath, R., Davison, B., & Wheater, H. S. (2016). A Comparative Study of the Runoff Generation Algorithms in MESH Hydrological Model, (May).

Hossain, Kamrul. (2017). Towards a Systems Modelling Approach for a Large-Scale Canadian Prairie Watershed. Master’s Thesis. University of Saskatchewan.

Kokelj, S. A. (2003). Hydrologic overview of the North and South Slave regions. Yellowknife, NWT, Canada.

Kouwen, N. (2014). WATFLOOD/ WATROUTE Hydrological Model Routing & Flow Forecasting System. Waterloo, Ontario.

Luo, Y., Arnold, J., Allen, P., & Chen, X. (2012). Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, Northwest China. Hydrology and Earth System Sciences, 16(4), 1259–1267. https://doi.org/10.5194/hess-16-1259-2012

Mailhot, J., Bélair, S., Lefaivre, L., Bilodeau, B., Desgagné, M., Girard, C., … Qaddouri, A. (2006). The 15-km version of the Canadian regional forecast system. Atmosphere - Ocean, 44(2), 133–149. https://doi.org/10.3137/ao.440202

Matott, L. (2017). OSTRICH: An Optimization Software Tool, Documentation and User’s Guide, Version 17.12.19. 79 pages. University of Buffalo Center for Computational Research. Retrieved from www.eng.buffalo.edu/~lsmatott/Ostrich/OstrichMain.html

Mekonnen, M. A., Wheater, H. S., Ireson, A. M., Spence, C., Davison, B., & Pietroniro, A. (2014). Towards an improved land surface scheme for prairie landscapes. Journal of Hydrology, 511, 105–116. https://doi.org/10.1016/j.jhydrol.2014.01.020

Mengistu, S. G., & Spence, C. (2016). Testing the ability of a semidistributed hydrological model to simulate contributing area. Journal of the American Water Resources Association, (52), 4399–4415. https://doi.org/10.1002/ 2016WR018760

Mkandla, H. (2017). Representing Spatial Heterogeneity for the White Gull Creek Watershed using the MESH model. University of Saskatchewan, Global Institute for Water Security. Saskatoon: School of Environment and Sustainability.

Morse, P. D., Wolfe, S. A., Kokelj, S. V., & Gaanderse, A. J. R. (2016). The Occurrence and Thermal Disequilibrium State of Permafrost in Forest Ecotopes of the Great Slave Region, Northwest Territories, Canada. Permafrost and Periglacial Processes, 27(2), 145–162. https://doi.org/10.1002/ppp.1858

Nash, J. E., & Sutcliffe, J. V. (1970). River Flow Forecasting Through Conceptual Models Part I: A Discussion of Principles. Journal of Hydrology, 10, 282–290. https://doi.org/10.1016/0022-1694(70)90255-6

Phillips, R. W., Spence, C., & Pomeroy, J. W. (2011). Connectivity and runoff dynamics in heterogeneous basins. Hydrological Processes, 25(19), 3061–3075. https://doi.org/10.1002/hyp.8123

Pietroniro, A., Fortin, V., Kouwen, N., Neal, C., Turcotte, R., Davison, B., … Pellerin, P. (2007). Development of the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale. Hydrology and Earth System Sciences, 11(4), 1279–1294. https://doi.org/10.5194/hess-11-1279-2007

Razavi, S., & Gupta, H. V. (2016). A new framework for comprehensive, robust, and efficient global sensitivity analysis: 1. Theory. Water Resources Research, 423–439. https://doi.org/10.1002/2015WR017559.

Spence, C. (2006). Hydrological processes and streamflow in a lake dominated watercourse. Hydrological Processes, 20, 3665–3681. https://doi.org/10.1002/hyp

Spence, C. (2019, June 10). Baker Creek Conditions and Parameter Selection Meeting. (H. Brauner, Interviewer)

Spence, C., Guan, X. J., Phillips, R., Hedstrom, N., Granger, R., & Reid, B. (2010). Storage dynamics and streamflow in a catchment with a variable contributing area. Hydrological Processes, 24(16), 2209–2221. https://doi.org/10.1002/hyp.7492

Spence, Christopher, & Hedstrom, N. (2018). Hydrometeorological data from Baker Creek Research Watershed, Northwest Territories, Canada. Earth System Science Data, 10(4), 1753–1767. https://doi.org/10.5194/essd-10-1753-2018

Spence, Christopher, & Woo, M. (2008). Hydrology of the Northwestern Subarctic Canadian Shield. In M. Woo (Ed.), Cold Region Atmospheric and Hydrologic Studies (pp. 235–256). Hamilton, ON: Springer.

Spence, Christopher, & Woo, M. K. (2002). Hydrology of subarctic Canadian shield: Bedrock upland. Journal of Hydrology, 262(1–4), 111–127. https://doi.org/10.1016/S0022-1694(02)00010-0

Studio Team. (2018). RStudio: Integrated Development for R. Boston, MA: RStudio, Inc. Retrieved from http://www.rstudio.com/

Tolson, B. A., & Shoemaker, C. A. (2007). Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resources Research, 43(1), 1–16. https://doi.org/10.1029/2005WR004723

University of Saskatchewan. (2019a, August 7). About MESH. Retrieved from MESH - A Community Hydrology-Land Surface Model: https://wiki.usask.ca/display/MESH/About+MESH

University of Saskatchewan. (2019b, August 12). Plato. Retrieved from Service Desk (usask account required for access): https://jira.usask.ca/servicedesk/customer/kb/view/1548517815?q=Plato&q_time=1565636151297

Verseghy, D. (2012). CLASS – The Canadian Land Surface Scheme (version 3.6) - Technical Documentation. Internal Report, Climate Research Division, Science and Technology Branch, Environmental Canada, (February).

Water Survey of Canada. (2019, May 13). Historical Hydrometric Data Search. Retrieved from Government of Canada: https://wateroffice.ec.gc.ca/search/historical_e.html

Yassin, F., Razavi, S., Elshamy, M., Davison, B., Sapriza-Azuri, G., & Wheater, H. (2019). Representation of Water Management in Hydrological and Land Surface Models. Hydrology and Earth System Sciences Discussions, (January), 1–35. https://doi.org/10.5194/hess-2019-7